Global Use of IEEE 1584

IEEE 1584 – It’s a Small World
The world’s electrical systems do not discriminate when it comes to electrical safety.  Electric shock, electrocution and arc flash hazards can occur anywhere on the planet that has electricity.  An interesting side note is that according to an International Energy Agency Report, around 1.2 Billion people do not have electricity.  Hard to imagine as I type this on my laptop, with good lighting and the heat pump working away.

Earth at night

IEEE 1584 – IEEE Guide for Performing Arc-Flash Hazard Calculations has been gaining global traction every day since it was first published in 2002. Although the IEEE 1584 standard has its roots in the United States, it has gained widespread international use as the most common method for Continue reading

Arc Flash Labels – Information No Longer Required (maybe)

New Label ExceptionNew Exception 130.5(H) Exception No. 2 – Arc Flash Label Information May Not Be Required.
It is amazing how the requirements for arc flash labels have evolved with each new edition of NFPA 70E. Known as Arc Flash Warning Labels by the National Electrical Code and Equipment Labels according to NFPA 70E 130.5(H), most people simply refer to them as arc flash labels.

What first began as a simple requirement to warn people of the arc flash hazard, has morphed into a list of required information found in NFPA 70E 130.5(H).  As an example the evolution of label requirements was the information to aid in selecting Personal Protective Equipment and Arc Rated Clothing.  In the past, the requirements began with Hazard Risk Category Tables, then it became using the Hazard Risk Category Tables OR the calculated incident energy.  Today the Hazard Risk Category Table is now the PPE Category Table and there is an array of options listed in 130.5(H). Another evolution was with the term originally known as Flash Protection Boundary.  It was later changed to Arc Flash Protection Boundary and finally to Arc Flash Boundary.  It is interesting to look at labels today and see what term is being used.  You still see some of the earlier terms but regardless of terminology, the Arc Flash Boundary remains as the distance (approach limit) from an arc source where the incident energy is 1.2 calories/centimeter2  (cal/cm2).  This is boundary is for the case when an arc flash hazard exists.

Fast forward to the 2018 Edition of NFPA 70E and yet another change to the labeling requirements has been added.  130.5(H) Exception No. 2 now permits eliminating the detailed information from the arc flash label!

No Information on the Label??!!           What?  Huh?  Are you kidding me?

Continue reading

The Elephant in the Room – Condition of Maintenance and Properly Maintained

panel not properly maintainedThe 2018 Edition of NFPA 70 provides a new definition for the term “Condition of Maintenance” :

The state of the electrical equipment considering the manufacturers’ instructions, manufacturers’ recommendations, and applicable industry codes, standards and recommended practices.

Another term that is cited in NFPA 70E is “Properly Maintained” —these two words often will have people scratching their heads. And often, developing a legal disclaimer. The term is often a hot topic (pun intended) when discussing the arc flash hazard. Why? Because protective devices such as circuit breakers and relays that have not been properly maintained may not operate as quickly as they should. This means that during an arc flash, a longer duration will result in a greater total incident energy, creating an even greater arc flash hazard.

Calculating the prospective incident energy from an arc flash depends on many variables including the available short-circuit current and the time it takes an upstream protective device to clear the fault. IEEE 1584 – IEEE Guide for Performing Arc-Flash Hazard Calculations provides equations that can be used for Continue reading

Electrical Safety Training – More then just “Checking the Box”

Jim Phillips, P.E.

One word.  Deadly!  If someone performs energized electrical work without being properly trained, the results can be catastrophic – and deadly!  I have seen this play out regularly during accident investigations and legal cases.  The victim was either not properly trained, or perhaps ignored a few steps from the electrical safety training program.

Many companies are very pro-active and make sure their employees are not only trained, but that they receive refresher training at least every three years based on NFPA 70E requirements.  Many even use shorter intervals for refresher training or updates.  Either way, refresher training is important for staying up to date with current standards and it can be a reminder to those that pick up bad habits along the way.

Electrical Safety Training – More than “Checking the Box”

However, a looming problem is that for some companies, training is either way down the list for various reasons or was not very thorough.  I have seen many companies that simply want to “check the box” i.e. state they had training without much regard to what the content was and check it off their to do list.  after all, what could possibly go wrong?

Continue reading

IEC TC 78 Live Working Standards

By Jim Phillips, P.E.
International Chairman IEC TC 78

Jim at the IEC Central Office in Geneva

As the International Chairman of IEC TC 78, a frequent question that I receive is “What is IEC TC 78?”

IEC is the acronym for the International Electrotechnical Commission based in Geneva, Switzerland.  TC 78 standards for Technical Committee 78 which is the Live Working Committee.  This committee is responsible for over 40 different International Live Working standards and documents and is represented by 42 countries via National Committees which includes 136 individuals known as Experts. Before I go any further, let’s back up a few steps first. Continue reading

The 2017 NEC and Arc Flash

By Jim Phillips

The 2017 National Electrical Code (NEC) contains several changes regarding arc flash:

Download FREE Arc Flash Calculations

  • 110.16(B) Arc-Flash Hazard Warning of Service Equipment
  • 240.87 Arc Energy Reduction (Circuit Breakers)
  • 240.67 Arc Energy 
Reduction (Fuses)

The severity of an arc flash is largely dependent on two key variables which include the available short-circuit current and the duration of the arc flash. The short-circuit current is determined by performing a short circuit study involving extensive calculations. The duration is normally defined by determining how long it takes an upstream overcurrent device, such as a circuit Continue reading

Keeping Skills Current with FREE Training

Published: May 2017

By Jim Phillips

Part 2 of 2 Part Series

There is an endless list of reasons for keeping your skills and knowledge up-to-date in the electrical industry. These days many electrical industry-licensing boards require a contractor to attend a minimum number of hours of training each year, often referred to as continuing education. However, the best reason is simply to stay current with the latest technology in the electrical industry.

Free Training

One of the biggest attractions to any program is the word “FREE.” It will draw attention to anything, and there are a lot of FREE resources out there. The following are some examples of FREE electrical industry training options and resources.

Webinars: Free webinars, and the invitations to them, are everywhere. Although some webinars may be a bit commercial, a growing number are jam-packed with the latest information about industry trends, products, methods and ideas.

Continue reading

Keeping Skills Current on a Limited Budget

2-Part Series

Published: May 2017
By Jim Phillips

Part #1 of a 2 Part Series:

What if you had been stranded on a deserted island for the past five years? By the time you were rescued, you would have missed the explosion of real-time social media, including Facebook, YouTube and Twitter, mobile marketing trends, as well as advancements in smart grids and wind and solar energy—it would be more than you could imagine. You may think, “I was only lost for a few years, how could industry and technology change so rapidly?”

What if you were stranded for just one year? You would have missed the latest Internet-of-Things (IoT) smart home technology, Augmented Reality (AR) and Virtual Reality (VR) technology movies, toys and games. You even would have missed the latest edition of the National Electrical Code (NEC) and the 2015 soon to be 2018 edition of NFPA 70E.

Get the idea? Just as the world continues to turn, with or without us, technology continues to change at a very fast pace. If you pause for too long, it will pass you by, and catching up could become quite a challenge. If you’re leaning against the ropes, you might as well learn them, so you can rebound faster and better.

There is an endless list of reasons for keeping your skills and knowledge up-to-date in the electrical industry. One reason is that many licensing boards require a contractor to attend a minimum number of hours of training each year, often referred to as continuing education. A participant receives credit known as professional development hours (PDHs) or continuing education units (CEUs). However, one of the best reasons is simply to stay current with the latest technology in the electrical industry.

What do competitive companies recognize that others do not?

Continue reading

What Could Go Wrong?

Creating An Electrically Safe Work Condition

Published: April 2017

By: Jim Phillips

 

“Kill the Circuit.” This phrase is a colorful way of saying, “De-energize the Circuit.” Easy enough — just open a switch or other protective device and the circuit is “dead.” It should then be safe to work on right?

WRONG! Simply opening a switch does not guarantee the circuit is de-energized. Really? What could go wrong?

There are many who still consider this simple “kill the circuit” approach to be standard electrical safety practice. This is a very dangerous method, for example, instead of the circuit being dead, the worker could end up dead!

According to NFPA 70E, there are many additional steps necessary to ensure the circuit is truly safe to work on. This multi-step process is known as creating an “electrically safe work condition,” which requires the following steps:

  1. Determine all possible sources of electrical supply – check up-to-date drawings, diagrams, etc.
  2. Interrupt the load and open the disconnecting devices.
  3. Visually verify that all blades of the disconnecting means are open if possible – drawout devices must be withdrawn to the fully disconnected position.
  4. Apply lockout/tagout devices in accordance with established policy.
  5. Use an adequately rated test instrument to verify absence of voltage.
  6. Apply properly rated ground connecting devices if there is a possibility of induced voltage.

(These steps are paraphrased from NFPA 70E 120.1 Process of Achieving an Electrically Safe Work Condition, which should always be used to define the complete procedure).

Continue reading