Arc Flash & Electrical Power Training | Brainfiller

Loading Events

« All Events

  • This event has passed.

Arc Flash Hazard Calculation Studies – Part 1

May 7, 2015 @ 8:00 am - May 8, 2015 @ 5:00 pm

Conference1In part one of the two day Arc Flash Training class, Jim Phillips, P.E. introduces the concepts required to perform an arc flash study based on IEEE 1584.  These concepts which not only include NFPA 70E requirements but also short circuit calculation basics, time current coordination curves, 85 percent multiplier, 125 kVA cut off, labeling and more, are necessary for a better understanding of the arc flash study process.  You will see how to simplify the arc flash study and arc flash labeling.  Receive answers to questions such as: why should an “infinite bus” short circuit calculation not be used, what is the “2 Second Rule”, what if the utility information is unavailable,  what really needs to go on an arc flash label and much more.  Plus, you will also get a peek into the next edition of IEEE 1584.

Jim Phillips is not just another trainer reading a script.   Jim’s training is based on his insider’s view from holding many leadership positions for the development of various electrical safety standards coupled with his arc flash testing experience and broad electrical power background.  This provides him a unique perspective from the inside – a perspective he loves sharing with others. When asked questions about some topics, his explanations often run along the line of “Well, here’s what happened in the lab when we blew it up…”

Here is a sample of Jim’s involvement.

Vice Chair – IEEE 1584 – IEEE Guide for Performing Arc Flash Calculations
International Chair – Geneva, Switzerland based,  IEC TC78 Live Working – 40+ global standards including many for arc flash.
IEEE/NFPA Arc Flash Collaborative Research Project – Member of the Steering Committee
Author of Complete Guide to Performing Arc Flash Hazard Calculation Studies

For a summary of the 2018 changes to NFPA 70E based on Jim’s article published in the multi-award winning Electrical Contractor Magazine, [CLICK HERE]

[Learn more about Jim Phillips]


What You WILL Receive:

Arc Flash Class Recive TheseInstructions on how to perform an Arc Flash Study
Training manual containing over 150 pages
Jim’s 30 page Arc Flash Calculation Guide
Many calculation examples and problems
8 hours of Continuing Education Credit

 


Arc Flash Hazard Calculation Studies – Part One

HUMAN EFFECTS
Physiological Effects, Electrocution, Tissue Damage, Internal Organ Damage, Burns Fibrillation, “Curable” 2nd Degree Burn

CODES AND STANDARDS
OSHA 29 CFR – Part 1910, Subpart S, NFPA 70, National Electrical Code®, 2015 NFPA 70E, Standard for Electrical Safety in the Workplace, IEEE Standard 1584™, IEEE Guide for Performing Arc Flash Hazard Calculations, Legal Requirements, Liability

ELECTRICAL HAZARDS
Electric Shock, Arc Flash, Arc Blast, Ultraviolet Light, Sound Pressure, Burn Injury

ARC FLASH CIRCUIT DYNAMICS – FAULT CURRENT, ARC DURATION, PLASMA
Arcing Faults vs. Bolted Faults / IEEE 1584, Effect of Current on Overcurrent Device Clearing Time, Current Limitation, Effect of Transformer Size and Source Strength

2018 NFPA 70E REQUIREMENTS
Shock and Arc Flash Risk Assessments, Creating Energized Work Permits, Electrically Safe Working Conditions, Arc Flash Labels, Qualified Person

ENERGIZED ELECTRICAL WORK PERMIT
Purpose of Permit, Using IEEE 1584 Calculations for the EEWP, Approvals Process, Exemptions

ARC FLASH BOUNDARY
AFB Definition, Purpose, Work Within the Arc Flash Boundary, Jim’s Approach – Using Standardized Large Boundaries, Overview of IEEE 1584 approach.

ARC-FLASH HAZARD IDENTIFICATION TABLE
NFPA 70E Table 130.7(C)(15)(A)(a) Arc-Flash Hazard Identification for AC Systems,
When is Arc Flash PPE Required?

ARC-FLASH HAZARD PPE CATEGORIES
Use of NFPA 70E Table 130.7(C)(15)(A)(b) Arc-Flash Hazard PPE Categories

ARC RATED CLOTHING AND PERSONAL PROTECTIVE EQUIPMENT SELECTION
Using IEEE 1584 Incident Energy Calculations to Select Protective Clothing and PPE, Face Protection, Head Protection, Hand Protection, Foot Protection, Limitations

IEEE 1584 –GUIDE FOR PERFORMING ARC FLASH HAZARD CALCULATIONS
History and Overview, Range of Applicability, Data Requirements, Study Process, Table of Results for the Arc Flash Study Report.

QUESTIONS ABOUT THIS CLASS?  CONTACT US AT 800.874.8883


Receive Answers to These Questions and More:

How do I organize a study?
What equipment really needs labeled?
Where do I obtain the required data?
How much information is really required on the arc flash label?
 Can I mix NFPA 70E Tables with arc flash calculations?
What PPE should I wear when I am gathering data to study what PPE I should wear?
Why do I also have to analyze arc flash during for minimum fault currents?
 Are time current curves a reliable way to determine arc flash clearing time?
What if I have a low arcing current that causes a long clearing time?
Is the 125 kVA 208V exclusion discussed in IEEE 1584 appropriate?
Is the “2 second cut off” appropriate?
How long can an arc sustain itself? – discussion of recent test data.
 What about Arc Blast and the 40 calories / centimeter squared upper limit? – Is it realistic?
 How do I greatly simplify the Arc Flash Protection Boundary and PPE selection?
How can current limiting devices reduce the incident energy?
Why use remote operation, arc resistant equipment, and maintenance switches?
 What are Jim’s latest tests and what are plans for the next revision to IEEE 1584?
Why is the L/E ratio ™ so important?


What is an Arc Flash Study?

See how to Calculate the Incident Energy at the Working Distance
See how to Calculate the Incident Energy at the Working Distance

As part of an arc flash study (Risk Assessment) the incident energy exposure level is determined based on the working distance of the employee’s face and chest areas from a prospective arc source. Arc-rated clothing and other PPE is selected with a rating sufficient for the incident energy exposure and shall be used by the employee based on the specific task. IEEE Std. 1584 tm, IEEE Guide for Performing Arc Flash Hazard Calculations is the method used globally for calculating the prospective incident energy.
NFPA 70E also requires determining the arc flash boundary, which is the distance from a potential arc source where the incident energy is 1.2 cal/cm2. This value is considered to be the point at which the onset of a second-degree burn occurs. Live work performed outside of the arc flash boundary does not require PPE, although the risk of some injury still exists.

The concept of these requirements is simple. At each location, the arc flash study is used to determine: The perspective incident energy exposure for a worker’s chest and face, the rating of PPE based on the perspective incident energy, the arc flash boundary.

Although the 2015 Edition of NFPA 70E provides more generalized PPE tables as a simplified alternative for PPE selection, an arc flash calculation study requires performing calculations to estimate the magnitude of incident energy exposure. These calculations are based on specific details, including the available short circuit current, device clearing time, grounding, arc gap distance, equipment type, and many other factors.

This information, as well as data regarding electric shock protection and approach limits, can be included on the arc flash warning labels placed on the equipment under study. Before conducting energized work, a qualified worker can refer to the label and obtain the data necessary for the shock hazard risk assessment and the arc flash hazard risk assessment as required by NFPA 70E.

Although an arc flash study can appear to be complex, it can be more manageable when broken down into basic steps as outlined in this training program.


Why Perform an Arc Flash Study?

According to OSHA 1910.132(d) The employer is responsible to assess the hazards in the work

Jim is setting up an arc flash test.
Jim is setting up an arc flash test.

place, select, have, and use the correct Personal Protective Equipment (PPE) and document the assessment. The use of NFPA 70E and other related industry consensus standards has been used to demonstrate whether an employer acted reasonably when there is a possible OSHA enforcement action taken.

So although NFPA 70E is not directly part of OSHA standards, it can be used as evidence of whether an employer acted reasonably in complying with OSHA standards and addressing “recognized hazards”.

There are more specific links within the OSHA standards as well. A typical example is found in 1910.335, Safeguards for personnel protection which requires: “(a)(1)(i) Employees working in areas where there are potential electrical hazards shall be provided with, and shall use, electrical protective equipment that is appropriate for the specific parts of the body to be protected and for the work to be performed.”

This regulation requires that employees must be properly protected from potential electrical hazards, by using adequate PPE, but it does not provide specific detail of what specific personal protective equipment is necessary to achieve the objective. It might be considered that based on this generalized statement, the selection of the correct PPE is open to interpretation however, this would be incorrect and an Arc Flash study should be performed.


Questions?

Brain LogoFor questions, registration information or to discuss holding this class at your location as an on-site training program, contact our Program Director at 800.874.8883

Brainfiller, Inc. | P.O. Box 12024 | Scottsdale, AZ 85267

Details

Start:
May 7, 2015 @ 8:00 am
End:
May 8, 2015 @ 5:00 pm
Event Category: