2018 NFPA 70E Update – What’s New? What’s Changed?

Published: June 2017

By Jim Phillips 
Based on Jim’s article originally published in the
May 2017 Issue of Electrical Contractor Magazine.

It is hard to imagine that three years have passed since I wrote the 2015 NFPA 70E update article for Electrical Contractor Magazine ECMag.com. My latest article about the changes for the 2018 Edition was just published in last month’s May issue and is also printed here.

Once again there are many significant changes such as a major reorganization of Article 120, the introduction of many new definitions, an even greater emphasis on the Risk Assessment, moving the hierarchy of risk control methods to mandatory language and the deletion of the informational note containing the 40 cal/cm2 reference. So get a jump on bringing your electrical safety and arc flash training programs in line with the soon to be released 2018 Edition of NFPA 70E.

Around 2,500 years ago, the Greek philosopher Heraclitus is credited with the saying, “The only thing that is constant is change.” Who knew this ancient proverb would apply to NFPA 70E, Standard for Electrical Safety in the Workplace? The 2018 edition is right around the corner, and once again, change is a constant theme. From both minor and major revisions to new additions and major reorganizations, this 11th edition contains many changes.

This article does not contain every change, and some language is paraphrased due to space limitations. Since the final document has not yet been formally approved, additional changes are possible before publication. Therefore, refer to the final approved version once it is published.

Continue reading

Arc Flash Study Top 10 FAQs Part #1

How Does Everyone Else Do This?

By Jim Phillips

3-Part Series

 

There are many frequently asked questions about performing an arc flash study (risk assessment) and understanding electrical safety requirements. A careful read of standards such as NPFA 70E or IEEE 1584 can answer some questions. Yet, other questions can be more complex, gray areas can lead to confusion, second-guessing and wondering how everyone else does it. Continue reading

Evaluation of Onset to Second Degree Burn Energy in Arc Flash

Our interest in determining accurate onset to second degree burn energy and its significance in computing the arc flash boundary is focused on the prevention of injury to the skin of a human who might be exposed to an arc-flash. During the last two decades different formulas have been proposed to calculate incident energy at an assumed working distance, and the arc flash boundary in order to determine arc rated personal protective equipment for Qualified Electrical Workers. Among others, the IEEE Standard P1584 Guide for Performing Arc-Flash Hazard Calculations [1584 IEEE Guide for Performing Arc-Flash Hazard Calculations. IEEE Industry Applications Society. September 2002] and formulas provided in Annex D of NFPA 70E [NFPA 70E Standard for Electrical Safety in the Workplace. 2012.] and CSA Z462 [ CSA Z462 Workplace electrical safety Standards. 2012.] Workplace Electrical Safety Standard are the most often utilized in the industry to perform arc flash hazard analysis. The formulas are based on incident energy testing performed and calculations conducted for selected range of prospective fault currents, system voltages, physical configurations etc.

Use of Incident Energy as a Measure of Burn Severity in Arc Flash Boundary Calculations
The IEEE P1584 Standard was developed by having incident energy testing performed based on methodology described in the ASTM F1959-99 standard. The incident energy to which the worker’s face and chest could be exposed at working distance during an electrical arc event was selected as a measure for determining hazard risk category and calculating the arc flash boundary. The incident energy of 1.2 cal/cm2 ( 5.0 J/cm2 ) for bare skinwas selected in solving the equation for the arc flash boundary in IEEE P1584 [1584 IEEE Guide for Performing Arc-Flash Hazard Calculations. IEEE Industry Applications Society. September 2002. page 41]. Also, NFPA 70E [NFPA 70E Standard for Electrical Safety in the Workplace. 2012. page 10] states that “a second degree burn is possible by an exposure of unprotected skin to an electric arc flash above the incident energy level of 1.2 cal/cm2 ( 5.0 J/cm2 )” and assumes 1.2 cal/cm2 as a threshold incident energy level for a second degree burn for systems 50 Volts and greater [NFPA 70E Standard for Electrical Safety in the Workplace. 2012. page 26].The IEEE 1584 Guidestates that “the incident energy that will cause a just curable burn or a second degree burn is 1.2 cal/cm2 (5.0 J/cm2 )” [1584 IEEE Guide for Performing Arc-Flash Hazard Calculations. IEEE Industry Applications Society. September 2002. page 96]. To better understand these units, IEEE P1584 refers to an example of a butane lighter. Quote: “if a butane lighter is held 1 cm away from a person’s finger for one second and the finger is in the blue flame, a square centimeter area of the finger will be exposed to about 5.0 J/cm2 or 1.2 cal/cm2 “. However IEEE P1584 equations (5.8) and (5.9) for determining the arc flash boundary can also be solved with other incident energy levels as well such as the rating of proposed personal protective equipment (PPE). The important point to note here is that threshold incident energy level for a second degree burn or onset to second degree burn energy on a bare skin is considered constant value equal to 1.2 cal/cm2 (5.0 J/cm2) in IEEE P1584 Standard.

Flash Fire Burn Experimentations and Observations

Much of the research which led to equations to predict skin burns was started during or immediately after World War II. In order to protect people from fires, atomic bomb blasts and other thermal threats it was first necessary to understand the effects of thermal trauma on the skin. To name the few, are the works done by Alice M. Stoll, J.B.Perkins, H.E.Pease, H.D.Kingsley and Wordie H. Parr. Tests were performed on a large number of anaesthetized pigs and rats exposed directly to fire. Some tests were also performed on human volunteers on the fronts of the thorax and forearms. A variety of studies on thermal effects have been performed and thermal thresholds were identified for different degree burns. We will focus on second degree burn as this is the kind of burn used to determine the arc flash boundary in engineering arc flash analysis studies.

Alice Stoll pursued the basic concept that burn injury is ultimately related to skin tissue temperature elevation for a sufficient time. Stoll and associates performed experimental research to determine the time it takes for second degree burn damage to occur for a given heat flux exposure. Stoll showed that regardless of the mode of application of heat, the temperature rise and therefore the tolerance time is related to heat absorbed by the skin[Stoll, A.M., Chianta M.A, Heat Transfer Through Fabrics. Naval Air Development Center. Sept. 1970]. Results of this study are represented in Figure 1 line (A) along with other studies discussed below. READ MORE

Time To Second Degree Burn Graph

Include Date on Arc Flash Label?

According to the 2015 Edition of NFPA 70E 130.5(2), The arc flash risk assessment “…shall be reviewed periodically, at intervals not to exceed 5 years, to account for changes in the electrical distribution system that could affect the results of the arc flash risk assessment.”

According to 130.5(D) Equipment Labeling, the date is not listed as a requirement for including on the label. However, many believe the date is an important aspect of the label in order to keep track of the “5 years” time limit.

Here is this week’s question:

Do you feel the date should be included on the arc flash label?
Yes
No

ANSWER

2015 NFPA 70E Changes

The following is an article that I wrote a few years ago listing the major changes for the 2015 edition. It was originally published in the May 2014 issue of Electrical Contractor Magazine and is provided here as a resource for your use.

Change Is On The Way! 2015 NFPA 70E
Published: May 2014 – Electrical Contractor Magazine
By Jim Phillips

Deja vu?

Déjà vu is that feeling you get when you think you have seen or done something before. NFPA 70E is giving us all déjà vu since it was just three short years ago, in 2011, that we were analyzing changes for the upcoming 2012 edition (see “It’s Almost Here, ”May 2011 Electrical Contractor Magazine. It’s time for that feeling once again as we move toward completion of the 2015 edition.

What’s new?

Some of the terminology used during this revision cycle has changed. Request for Proposals are now called Public Input (PI), and this revision cycle had 448 PIs. The Report on Proposals (ROP) is now called the First Draft, and what was previously called the Report on Comments (ROC) is referred to as the Second Draft.

The changes this article outlines are based on what was known at the time of writing. It does not include every change made, and much of the language is paraphrased due to space limitations. Since the NFPA Standards Council has not formally approved the final document, there is always the possibility of additional changes. Therefore, always refer to the final approved version when it is published.

Global changes

Several terms used throughout NFPA 70E have been changed for the 2015 edition. The left column in the terms table above refers to the term used in the 2012 edition and the right column lists the new corresponding term for 2015.

Please note: all references to hazard/risk category (HRC) have been deleted throughout the standard. Arc flash PPE category is the revised term.

READ MORE

Arc Flash Labels-PPE Category

In the NFPA 70E-2015 Handbook, page 122, 130.5(D) states incident energy or PPE category shall be on the equipment arc flash label, but not both. Yet when reviewing Annex H in the NFPA 70E-2015 handbook, on page 279 it states “Arcflash PPE categories may be applicable when using incident energy method to perform an arc flash risk assessment. When performing an incident energy analysis, the arc flash labels created may include an arc flash category”. Am I missing something or is this a mis-print?? READ MORE.

Work on an energized disconnect

Recently, a client asked if there was something I could point to in the NFPA 70E Standard that specifically prevented a qualified electrician from working on a disconnect after it was shut off, but with the line side left energized?

I asked exactly what he meant? He said our electricians sometimes need to disconnect one of our 480 volt welders for repair or to be serviced. We sometimes have more than one welder on a circuit, so shutting off the breaker to disconnect a welder affects other welders or machines. So, my question is this: is there a specific section in NFPA 70E that prevents the above described activity? Please remember, the electrician has verified that the load side of the disconnect is off. However, he’s left the line side energized. READ MORE

ANSI Z535 – Series of Standards for Safety Signs and Tags

Many safety labels use either Caution, Warning or Danger with a specific color associated with it.

The U.S. National Electrical Code and NFPA 70E both reference ANSI Z535 to provide guidance regarding effective words, colors and symbols for signs and labels that provide warning about electrical hazards.

Other countries may have a different standard for guidance.

Here is this week’s question:

How familiar are you with the ANSI Z535 Series of Standards for Safety Signs and Tags

Not in the U.S. / Doesn’t apply
Not Familiar
Know about it
I’ve read it

ANSWER QUESTION

Lock Out / Tag Out Simple vs. Complex

BUY NOW: 2018 NFPA 70E Changes Part 1

OSHA and NFPA 70E refer to a Simple LOTO as involving only one person/conductors/circuit part(s). A Complex LOTO is when there are conditions such as more than one person/circuit/shift/source involved – A complex LOTO has significantly more requirements.

Here is this week’s question:

Have you ever performed a complex LOTO?
Yes
No

ANSWER

 

About Jim Phillips: Electrical Power and Arc Flash Training Programs – For over 30 years, Jim Phillips has been helping tens of thousands of people around the world, understand electrical power system design, analysis, arc flash and electrical safety.

NFPA70E 2018 Update video by Jim PhillipsJim is Vice Chair of IEEE 1584, International Chairman of IEC TC78 Live Working and Steering Committee Member – IEEE/NFPA Arc Flash Collaborative Research Project. He has developed a reputation for being one of the best trainers in the electric power industry.  Learn More


Arc Flash & Electrical Power Training Classes
 by Jim Phillips Click Here

Arc Flash & Electrical Power Training Products by Jim Phillips Click Here

Sign-up for my monthly publication “Grey Matter” which contains news about new standards, conferences, technical articles, Electrical Engineering news and more! Click Here

AF Boundary Marking

Hi,
As per NFPA 70E, we have 3 boundaries to mark(AFB, limited and restricted). It is easy to mark and follow only one boundary which is greater than two. Sometimes AFB is more than limited approach boundary, so we marked the AFB and follow that.

But sometimes AFB is very less for lighting boards and power distribution boards. Also it is not feasible to mark limited boundary as it is very big for small board placed in normal working area and not even AFB because it is too small to mark.

I need some suggestions on it, that whether to mark boundary to LDB & PDB’s. If yes, which boundary need to mark? READ MORE.

Arc flash detection relay

What is the practice for the use of arc detection relay trip time in the arc incident energy calculations? NFPA-70E recognized arc detection relay but kept under “Other Methods” as opposed to “Incident Energy Reduction Method”. Does this means the arc flash relay tripping time should not be used for the arc incident energy calculations? READ MORE.

NFPA 70E and Improved Electrical Maintenance

The duration of an arc flash can be greatly affected by the condition of electrical protective devices – i.e. circuit breakers, relays etc. NFPA 70E has been placing an increased emphasis on equipment being properly maintained.

Has your company/client increased the emphasis on electrical maintenance as a result of 70E?

Yes
No
Many clients – it depends

CLICK to answer.

2015 NFPA 70E – 10 Item Check Up

With the 2015 Edition of NFPA 70E being published and all of the changes that it brings, it is time to review your arc flash study, labels and overall practices.  There are many key areas that should be evaluated.  Here ten of the more important areas to look at to give your site a check up. Continue reading

NFPA 70E – Qualified Workers

“Raise your right hand”  Pretty intimidating words – especially if they are said in a court room and the trial is about an injury or death.  –  and you are on the wrong side of what happened.  Let’s face it in the litigious society that we have in the United States, it seems anytime there is an accident where there is a significant economic loss, personal injury or worse – someone died, there will almost certainly be legal actions. Continue reading

NFPA 70E – 2015 Edition – Update of Changes

NFPA 70E – Standard for Electrical Safety in the Workplace, was first published in 1979 and consisted of only one part, The 2015 Edition marks the tenth edition to NFPA 70E and with it, many sweeping changes. This article provides a review of the major changes to the latest edition of this important electrical safety standard. Continue reading

Electric Shock – It CAN Happen to Anyone – Like Me!

Electric shock happens to more people than they care to admit. In almost every NFPA 70E / electrical safety training class that I conduct, I ask the group “how many of you have NEVER experienced an electric shock.” I have yet to see a hand go up. In today’s “Modern World” electricity is part of daily life and as a consequence, an electric shock can happen to anyone – Including Me! Continue reading

Working Distance Mistakes in an Arc Flash Study

Download FREE Arc Flash Calculations

The term “working distance” appears 20 times in the 2012 Edition of NFPA 70E, the Standard for Electrical Safety in the Workplace. It appears 12 more times in the annexes. The working distance is an important component of the arc flash hazard analysis and is frequently listed on arc flash warning labels and in the arc flash report.

IEEE 1584—IEEE Guide for Performing Arc Flash Hazard Calculations 2002 defines the working distance as “the dimension between the possible arc point and the head and body of the worker positioned in place to perform the assigned task.” Continue reading

NFPA 70E Major Updates for the 2012 Edition – Part 2.

Although beginning with an erratic schedule with revisions to NFPA 70E being spaced anywhere from 2 to 5 years apart, this very important electrical safety standard is now on a regular 3 year revision cycle. In early 2011, I wrote an article about the significant changes that were about to be part of the 9th Edition, the 2012 Edition of NFPA 70E Standard for Electrical Safety in the Workplace. This article will take us a little further into the standard and address some changes that I was not able to include in the previous article. Continue reading

Arc Flash Hazard Calculation Studies

In the earlier years of NFPA 70E and the emergence of arc flash protection requirements, many people would use the NFPA 70E Hazard/Risk Tables to determine what arc rated PPE to wear. This approach continues to shift towards the use of arc flash studies involving incident energy and arc flash boundary calculations based on IEEE 1584. Continue reading

Arc Flash Training – Keeping Skills Current in a Down Economy

Electrical Power Training and Arc Flash Training remain even more important in a down economy.

What if you had been stranded on a deserted island for the past five years? By the time you were rescued, you would have missed the explosion of social media usage, including Facebook, YouTube and Twitter, as well as advancements in smart grids and wind and solar energy—it would be more than you could imagine. You may think, “How could the industry have changed so much? I was only lost for a few years.”

What if you were stranded for just one year? You would have missed the latest tablet computer, the rapid development of smart phone apps and quick response (QR) codes (those odd looking bar codes for smart phone scanning). You even would have missed the latest edition of the National Electrical Code (NEC) and the 2012 edition of NFPA 70E. Continue reading

Using Correct Electric Utility Data for an Arc Flash Study

One of the first steps in performing an arc flash calculation study is to request short-circuit data from the electric utility company. This kind of request is pretty routine, and utilities have been providing this type of data for short-circuit studies for years. The problem is the data used for a short-circuit study may not be suitable for an arc flash study. Continue reading

Arc Blast and 40 calories/centimeter squared

You look at the arc flash warning label and scratch your head. Danger! No PPE Category Found. No personal protective equipment (PPE) category? Now what? This type of language is often on arc flash warning labels when the calculated incident energy exceeds 40 calories per centimeter squared (cal/cm2). What is so special about the number 40?  The fear of the Arc Blast is not always well founded. Continue reading

Coordination and NEC 240.87

NEC 240.87 has addressed a potentially hazardous situation beginning with the 2011 edition. When selective coordination is critical, e.g., minimizing the extent of an outage, a common design practice is to use a main circuit breaker without an instantaneous tripping function and feeder breakers with one. Without an instantaneous, the main can time delay up to 30 cycles or 0.5 seconds greatly increasing the arc flash hazard.   Continue reading

How to Perform an Arc Flash Calculation Study

This article by Jim Phillips provides an overview of how to perform an arc flash study.  It was originally presented at the 2010 NETA Conference.  InterNational Electrical Testing Association.

Arc Flash Hazard Calculations Studies guide

BUY NOW

Arc Flash Calculation Study
Many separate codes, standards and related documents are available regarding electrical safety and arc flash. However, a standardized recommended practice or guide that integrates all of the components into an Arc Flash Calculation Study does not presently exist. Continue reading

How Did We Get Here? The History of Electrical Safety

BUY NOW: 2018 NFPA 70E Changes Part 1

It seems like the more you attempt to learn about arc flash and electrical safety, the more confusing it becomes. A mixture of letters such as OSHA, NFPA 70E, NEC, IEEE 1584, ASTM F1506 seem to be the secret language used by the electrical safety industry. Who created this alphabet soup of standards, and how did we get here?

Continue reading